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1. Introduction

The energy exchange between the inner and the outer degrees of freedom
takes place during state changes in gases and gas mixtures; and it happens
so fast that the details of the time-dependent events don't matter for
many technical processes. This does not, however, apply for state changes
when the gases become rarefied. When the pressure is sufficiently
lowered, one can observe how, at first, the translational degrees of
freedom of the molecules adjust to the new state and then, almost at the
same time, the rotational degrees of freedom follow. The adjustment of
the new vibrational state comes later in a most pronounced way. If one
ignores the effect of radiation fields which may be present, then the
changes in state are caused by the collisions of the molecules with one
another. Thus, there are three possibilities for the change in the
vibrational state. VT-collisions cause transiational energy to be
converted into vibrational energy. In the same manner, VR-collisions can
cause rotational energy to be transiated into vibrational degrees of
freedom. These energy transfer processes are seldom differentiated
experimentally which is why they are most often described in terms of
VT-collisions. The third possibility for the energy exchange is given in
terms of VV-collisions where a molecule can donate vibrational energy to
the vibrational degrees of freedom of another molecule. As of today, many
of these processes are not precisely understood. The vibrational energy
exchange between various degrees of freedom is of technical interest
wherever rarefied gases are encountered. This is often the case in space
travel, for example, also for currents in shock tubes and wind tunnels. It
is also in measuring techniques that these processes play an important
role. For example, the results of laser fluorescence measurements can be
influenced by the collision de-excitation of molecule vibrations. Some
gases, furthermore, possess catalytic characteristics in their excited
vibrational states with respect to chemical reactions. One of the most
important areas of application, however, should be the development of
molecular lasers.

While it is often possible to start from a momentary or localized energy
equilibrium distribution for the translational- and the rotational degrees
of freedom, even at substantial deviations from the thermodynamic
equilibrium, one can just as frequently not justify this prerequisite for
the degrees of vibrational freedom. The validity of such assumption must
at least be carefully checked where energy transfer rates from
VV-collisions reach the same magnitude as the energy transfer rates from
VT-collisions. It is certain that there will be disturbances in the



Boltzmann distribution of the vibrational energy wherever there are strong
radiation fields, as is the case inmolecular lasers. In Chapter 4.2, €0y~

laser crossings are examined which could be activated only under the
prerequisite that there is a disturbance in the Boltzmann distribution of
the degrees of freedom.

The objective of this dissertation is the development of a mathematical
model which describes the vibrational energy exchange in flowing gas
mixtures. This will take into account a given number of energy levels for
each vibrational degree of freedom. The number of these energy levels can
be arbitrarily chosen. in the model chosen here, the values from 10 to 40
were used. The energy distribution beyond these levels can deviate from
the equilibrium distribution.

in Chapter 4.1., the validity of the model is proven through the example of
a so-called cross-current C02—|aser with high-frequency excitation, for

which experimental results from literature are available.



2. General Formulation

In this chapter, a kinetic model is developed which is applicable to any
arbitrary gas mixtures with an arbitrary number of vibrational degrees of
freedom per kind of gas. For the purpose of a more simplified, systematic
treatment, the energy exchange reactions are divided into three
categories:

- VT-collisions which lead to the energy transfer within the
particular vibrational degrees of freedom.

- VV-collisions between different kinds of molecules.

- VV-collisions which lead to an equilibrium between two different
vibrational degrees of freedom of a molecule.

For the purpose of better differentiation, the last category is going to be
designated as the V-reaction in this paper. The VR-collisions are going to
be assigned to the VT-collisions, as mentioned in the introduction.

2.1. Rate Fquations and Density Distribution Changes

A gas mixture is considered which consists of N different types of gas.
Each type of gas n shows |, non-degenerated vibrational degrees of

freedom with M energy levels. Degenerated vibrational forms are treated
like simple degrees of freedom, but with twice the vibrational energy at a
constant rate of transfer. Thus the number of VT-reactions between the
ground state and the first excited vibrational state is given by

N
R IE

n=1

and the total number of all VT-reactions is given by the product

Je(M-1)



in general, the reaction velocity constants for all molecule combinations
will be different, so that one requires JeN velocity constants for all of the
VT-reactions. From this, one can determine, as will be shown in Chapter
2.3.2., the velocity constants for vibrational energy levels of higher
excitation and for all reactions in the opposite direction. In accordance
with the division into the three reaction categories, there is a need for K
reaction velocity constants for the VV-reactions. V-reactions may
proceed, just like the VT-reactions, with any arbitrary collision partners,
so that now there is a need for LN velocity constants for L different
V-reactions.

If the matrix of the concentration is designated as C, having J columns -
corresponding to the total number of all vibrational degrees of freedom -
and M lines - corresponding to the number of energy levels taken into
account -, then one obtains for the concentration with respect to change
with time

o |-
.
ala
(o

ac _ .
at ¢

+
=

(21.-1)

The term C  p/p taking into account the change in concentration due to
change in density, and the matrix D which, like C, shows J columns and M
lines, describes the transfer of matter in the reactions. There should be
no significant gradients of the magnitudes of state perpendicular to the
direction of flow, so that one deals with a uni-dimensional flow pattern.
Matrix D is composed in accordance with the classification of reaction
categories as follows:

-

"By (2.1.-2)

D = Bype Byp s Ay Dy + Ay

Thus, all Ai numbers represent matrices which describe the qualitative
transfer of matter in the reactions. Matrix DVT contains all transfer

rates of the VT-reactions in J columns and in M-1 lines, and vectors
va and Dv contain the K and L transfer rates of the remaining

reactions. Matrix AVT is put together in accordance with

-1 f-. ry = : . )
ard=t i=1,2,.0., (M-1)
aji = 0 fir j = i,i+1 .

+1 fir j = i1 |

The matrices Ayy and Ay, on the other hand, have a three-dimensional



structure which is shown inFig. 2.1.-1. These matrices contain for
certain values k,1 at the location j,m the number | in space; this number
has in the concentration matrix C an element C §.m which is formed in the

reaction k,1; they attain the number -1, wherever there is in C an
element C J,m which shows an initial substance in the same reactionk,1.

All other matrix elements disappear.

» (2 W.

s e
/

aj/v v
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N

M A v,

Fig. 2.1.-1

Structure of the reaction matrix Av and AW

Muitiplying the transfer vector Bv vy by sub-matrices U jv vy leads to
the plane transfer matrices BV vV

The multiplication with the transfer vectors va y has to be performed in
such a way that each sub-matrix U va vy is multiplied by va y- What

results, is a matrix with J columns and M lines. The transfer rates of
the VT-reactions which form the matrix DVT are calculated according to

VT(J m) = Z { VT(J m,n} .m-RVT(j’m’n)'cj .m+1]} (2""3)

n={

where En stands for the momentary total concentration of gas type n.
Since chemical reactions are not taken into account, En changes only with



a change in density. The transfer rates of the remaining reactions which
form the vector BVV,V’ are calculated according to

ayy{d.m,k)>0 ayyldom,k)<0
dyy(K) = Hyy () TTCC3m) - Ryyk) T (5 m) (2.1.-4)

and

N (2.1.-5)
8y = 3 {e, - Ty ey =Ryt )}

na1{ .
The indices run from 1 to K,L. The designation C, stands for those
concentrations C; m, for which ay(j,m,1)>0,, and Cg stands for those
concentrations for which ay(j,m,1)<0. Generally, H stands for the

reaction velocity constant of the endothermic reaction path and R stands
for the constant of the opposite reaction. Quantum mechanics provides the
connection between H and R as follows:

H = R-exp(-AE/RT) . (2.1.-6)

Instead of concentrations, one frequently finds density distributions. The
relationship between these two values is given by

where n,, stands for the density distribution of a level m and N, stands

for Avogadro's constant. In cases of equilibria, the density distribution of
levels of a vibrational degree of freedom are described by a Boltzmann
distribution which is unequivocally determined by a given characteristic
vibrational temperature © for the degree of freedom and by a momentary
vibrational temperature T,;,. For the finite number M of energy levels,

one obtains that portion of molecules situated in state m by the
relationship

1-exp ('O/Tvib) ]
X = . om. . |
T e [-(W1) - orT ] exp (-m - O/T ;) g (2.1.-7)

10



where the index m can assume the values 0, 1, 2, ........ , M-1.

For a Boltzmann distribution to exist, there is no need for thermodynamic
equilibrium. With deviations from thermodynamic equilibrium, all degrees
of freedom can qualify for a Boltzmann distribution where there is, in
general, one particular local or momentary vibrational temperature T,

for each vibrational degree of freedom. This is surely the case when the
reaction velocity constants for the VV- and the V-reactions are
substantially smaller than the velocity constants for the VI-reactions of
the corresponding energy levels. One can, however, imagine cases where
the Boltzmann distribution is disturbed by rapid VV- and V-reactions.
This means that the complete coupled differential equation system must
be solved, with the reaction-kinetic part given by equations (2.1.-1)
through (2.1.-6).

22 Motion Equations

For cross-sectional changes, provided they don't occur too quickly, one can
treat the flow of gas mixtures in a uni-dimensional form. Thus, the
conservation equations for mass-, impulse-, and energy flow are

Pruch =ppugcA o, (22.-1)
(D Uz*‘ D) « A = (01 U12+ 91) . A1 » (2.2.-2)
p-u-A(h+%u2) = 0 ulA1 (h1+—%u12) . (22"3)

The designations p, u, and A stand for the momentary or local values of the
gas density, for the flow velocity, and for the cross-sectional flow. The
index 1 designates an initial state. In this paper, only flow in tubes with
constant cross section is given consideration, so that

The density in the systems under consideration is so low that the thermal
state equation for ideal gases

p = Rep-T

/l



can be used. The change in enthalpy ah = h-hy is developed in the form

7
dh =2 ~a.R- -
2 @ R T-T) sae gy

where Aeyy;, is the change in the vibrational energy. The factor o takes
care of the fact that eventually the admixed atomic gases will no longer

possess any rotational degrees of freedom. Ity A is the mole fraction for '

molecular gases andy'g is the mole fraction for atomic gases in the
mixture, then the relationship for the factord is given by

a = ¢A+w8.5/7

where'\rA +Yg = | and5/7¢a 1. For time-related changes of the total
density p, of the gas temperature T, and of the vibrational energy ae,

for the gas mixture, there are the following relationships with the help of
the conservation equations:

dae, .
v1b = ‘ . : :
L RAR

9T hip Raud T

dt dt w-RT 29
and

dp dT

- = - 'R-o/(uz-RT)

ad
a.,
Lad

D [ stands for the transfer rate of reaction j, and E [ for its heat effect.
For the flow velocity u , one immediately obtains u = uy-p,/p from the
continuity equation.

9,



2.3 Reaction Velocity Constants

One can, similar to chemical reactions, determine temperature-dependent
velocity constants for the energy exchange between degrees of freedom in
gases. Such quantities are measured. If this is not possibie, then they
have to be calculated theoretically. The application of reaction velocity
constants for the energy exchange between the degrees of freedom in
gases is not normally used. More often, one finds these processes
characterized by relaxation times or transition probabilities. Transition
probability Pn,m , obtained through a molecular velocity distribution,

shows the probability at which a gas-kinetic collision of two particles
evoke a change of the vibrational state from n to m of one of the two
particles. with the help of quantum mechanics one can show that the
exchange of more than one vibrational quantum per collision is relatively
unlikely. In the same manner, one can show with the help of the kinetic
gas theory that, at low densities and not excessively high temperatures,
the collision of more than two particles is rare in comparison to the
collision of two particles. This means that the distribution density
change of any arbitrary energy level n of a degree of freedom can be
described by the rate equation

dx

N a.z.(r P
dt

. - . X
n+t,n " *net T Tn,net "

’Pn-1,n “Xn-1 -pn,n-l ) xn)}" (23"‘)

where Z stands for the frequency of collision of the given molecular
velocity distribution. The following assumes that this is always a
Maxwell velocity distribution. With the help of quantum mechanics, one
obtains for the transition probabilities

P =z ("”)'Pi,o

n+1,n

and (23.-2)

T MeE . (2.3.-3)

where € stands for the characteristic vibrational temperature of the
degree of freedom under consideration, and T stands for the gas
temperature. By multiplying the distribution density change by the
corresponding level energy

/3



Aep =Re0+(n + 1/2), and by subsequent summation across all levels N,

where N is finite, one obtains for the change in the total vibrational
energy of the degree of freedom under consideration

d Aevib

Ro-dt

B8, 5b~ Beyip

Roe

= Z'Pl,o'[“-w .

SCRRIRIURE SRR RYC M)

With the help of the statement

dAevib . A-évib'Aevib ‘
dt Tyib )
one eventually obtains
iy * Z.Pm.‘(w).w (2.3.-4)
with
v o n(u.n-(mg)-%;-(rN-xN).Ré/(nﬁb-Aem)'

N stands for the finite number of available ehergy levels, ¢ for the
Boltzmann factor exp( - ©/T), and Xy and Agvib stand for the uppermost

energy level and for the oscillator energy in case of equilibrium. For the
harmonic oscillator with N-oo, one obtains = 1. For the harmonic
oscillator with a finite number of levels N , one obtains, however, values
of{ > 1. For almost all gases, however, the approximation ofy'= 1 is
valid for temperatures up to a few thousand degrees. Thus, the application
of the pure exponential law within wide temperature limits appears
Justified, for the time being.

Since the kinetic data for the kinetic model of this paper are of great
importance, a closer examination will now be conducted as to how these
data can be determined.

/4



2.3.1. Application of Experimental Results

If the results of the vibrational relaxation measurements are present in
the form of relaxation times, they then can be used to calculate the
corresponding reaction velocity constants. If the concentration of the
collision partner is designated with [M], then the effective velocity
constant is obtained as

The velocity constant of the exothermic reaction results from it as

- z.p
kK = 1,0

(M) ' (23.1.-1)

From Equation (2.3.-4), one obtains for P, , as the function of the
relaxation time

1

ZUP1'° = _—_T.(l-¢)'

with the Boltzmann factor § = exp( - 8/T), so that the velocity constant
of the exothermic reaction assumes the term

e R:T
Topy- (1-0) (2.3.1.-2)

where Pp stands for the partial pressure of the collision partner.

Two methods for the measurement of VT-relaxation times have proven
themselves as especially suitable:

- the measurement of the absorption of sound waves

- the measurement of the density structure in the relaxation zone
behind gas-dynamic collisions.

Both methods are described in detail by Cottrel! and McCoubrey [19)

Sound absorption measurements make a very accurate determination of the
vibrational relaxation times possible at a relatively modest investment.

For reasons related to application technology, this is, of course, possible /S
only within a temperature regfon of 250K and 1000 K. From the



sequence of sound absorption above the sound frequency, one can determine
the vibrational relaxation time. The remarkable aspect of this method of
measurement is that the deviations from thermodynamic equilibrium is
always small. The measurements in the collision tube, on the other hand,
make translational temperatures from 300 K to several 10000 K possible
where substantial deviations from thermodynamic equilibrium can occur.
From the density structure of the relaxation zone, one can determine the
change of the inner energy of the gas. For most gases one can, without
difficulty, calculate from this the share of vibrational energy, so that for
each point of the relaxation zone one can determine a vibrational
relaxation time. Measurements in CO, which were evaluated in this way,

have shown that the distance from thermodynamic equilibrium exercises a
significant influence upon the vibrational relaxation time [20]. This is
also shown by the theoretical investigations in Chapter 2.3.2. of this
paper. When VT-relaxation time measurements in molecular gases with
several vibrational degrees of freedom are made, the problem arises that
one either has to assign the gained relaxation times to a certain degree of
freedom, or one has to split the results with the help of a model in order
to obtain the relaxation times of all vibrational degrees of freedom. Next,
simple models are used here to clarify the question, to what extent the
particular VT-relaxation times of such molecules must differentiate
themselves, so that they can be solved by sound absorption measurements
or by density measurements in the collision tube. To this end it is
assumed that within each vibrational degree of freedom there is a
Boltzmann distribution, and that the vibrational degrees of freedom don't
influence one another by couplings. Under those circumstances, one
obtains the expression for the energy which is contained in the vibrational
degrees of freedom, in terms of

€ib =Zievibi =Z‘:Rei' ,—a— . (2.3.1.-3)

Assuming that in the matter of sound waves in gases, one deals with
adiabatic changes in state, one can describe the expansion of sound in
accordance with Cottrell, McCoubrey [19)by

ap u

22 =0
at X

/6



An exponential expression of the type f = f*,e (@t = KX) for gy

variables results in a linear equation system whose solution leads to the
complex velocity of sound

In this expression, Cyjpj = %yjp;j / T is the heat capacity of the degree
of freedom j at constant volume, ¥ = 2mYvis the circular frequency of

the sound wave, and T j is the VT-relaxation time of degree of freedom j.

Thus, the following relationship is obtained for the velocity of sound as a
function of frequency v

and for the absorption coefficient, one obtains

17



a i 2meg - lm(a")

(2.3.1.-4)

The assumption is now made that the vibrational relaxation zone clearly

contrasts from the pure gas-dynamic collision. Under this assumption, the
vibrational relaxation zone can be described with the help of the

conservation equations for mass-, impulse-, and energy flow at constant
cross-sectional flow by

p*wW = pz-wz
p-wiep = p2w22+p2

1.2 A

1.2
P W(fw . % RT#evib) = 0, wz(—z-w2 + 3 RT2+ ev‘ibz)
p = p- R-T
N
S(1- e VT
®vib ~ vib, Z [(evib3'evib2) (1-e ]

i=1

The state immediately after the collision was characterized by the index
"2", and the state of thermodynamic equilibrium was characterized by the

index “3". If the equation system is solved for the dimensionless density
X"~ p/po , then one obtains

1

r- € - s 11/:‘;
T%(";‘,::i"[“"" Z I3 Y2 ety ‘('_72'31}"%)] (2.3.'.‘5)
2

The two equations (2.3.1.-4) and (2.3.1.-5) are now applied to carbon-
dioxide and water vapor.

The CO,-molecule exhibits the following vibrational forms:

- Symmetrical valence oscillation with @, = 1920K
- doubly decayed bending oscillation with 8, = 960K
- agsymmetrical valence oscillation with 83 = 3380K

At a temperature of 288 K and a pressure of 1 bar, the vibrational
relaxation time of CO, lasts about 6.13 psec. It is now assumed that this

/¥



is the relaxation time of the bending oscillation, and then the question
arises which common relaxation time the other two degrees of freedom
have to show, so that one obtains a second relative maximum at the
measurement of the sound absorption. Fig. 2.3.1.-1 shows that this is the
case for the relaxation time relationships

1,3 > 1000 - g,

Similar relationships result from weak collisions. At a temperature of
500 K immediately after the gas-dynamic collision and an initial pressure
of 1 mbar, one should expect a vibrational relaxation time of 3.53 usec.
One can see in Fig. 2.3.1.-3 that for the relaxation time relationships

Ty,3 > 100 - 12‘
there is a step-wise density curve in the relaxation zone. If the

temperature of 1000 K is chosen for both experiments, then the proof of
varying relaxation times for :

T > 100 - 1

1,3

is successfully made.

The H20-molecule exhibits the same vibrational forms as the
C02-molecule:

- Symmetrical valence osclllation with 8, = 3257K
- simple bending oscillation with 8, = 2296 K
- afsymetrical valence oscillation with 85 = 5406 K

At apressure of 1 mbar and a temperature of 288 K, the relaxation time
is about 7.3 psec. It is assumed again, that this is the relaxation time for
the bending oscillation, and then the question arises how large the
common relaxation time of the other two oscillation forms have to be, so
that two absorption maxima can be observed. This question is quickly
answered by remembering that, according to equation (2.3.1.-3), the other
two oscillation forms contain only 0.13%8.0f the entire oscillation energy
at a temperature of 288 K This means that for the case at hand, one
shouldn't expect a second absorption maximum, whatsoever. At the same
temperature, the energy portion of the valence oscillations of the

[text continued on page 24 ] /9



Fig. 2.3.1.-1

Sound absorption in CO, relativeto p = 1 bar.

Curves designated with the numeral "1” , refer to a temperature of 288 K.

1a: All degrees of freedom have the same relaxation time.

1b : Both valence oscillations have a relaxation time which is greater by a
factor of 1000 than that of the deformation oscillation.

Curves designated with the numeral "2" , refer to a temperature of 1000 K.

2a: All degrees of freedom have the same relaxation time.

2b : Both valence oscillations have a relaxation time which is greater by a
factor of 100 than that of the deformation oscillation.

2c : The asymmetrical valence oscillation has a relaxation time which is
greater by a factor of 100 than that of both other oscillation forms.

KO
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Fig. 23.1.-2

Sound absorption in H20 relative to p = | bar.

Curves designated with the numeral "1° , refer to a temperature of 288 K.

1a: All degrees of freedom have the same relaxation time.

1b : Both valence oscillations have a relaxation time which is greater by a
factor of 1000 than that of the bending oscillation.

Curves designated with the numeral "2" , refer to a temperature of 1000 K.

2a: All degrees of freedom have the same relaxation time.

2b : Both valence oscillations have a relaxation time which is greater by a
factor of 1000 than that of the bending oscillation.

K
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Fig. 2.3.1.-3

Density curves in the relaxation zone behind collisions in pure CO, at an
initial pressure of 1 mbar.

The curves designated with the numeral "1" , refer to a collision Mach

number of Ma = 2.05 and lead to a temperature of T =500 K.

la: All degrees of freedom have the same relaxation time.

1b : Both valence oscillations have a relaxation time which is greater by a
factor of 100 than that of the deformation oscillation.

The curves designated with the numeral "2" , refer to a collision Mach

number of Ma = 3.6 and lead to a temperature of T = 1000 K

2a: All degrees of freedom have the same relaxation time.

2b : Both valence oscillations have a relaxation time which is greater by a
factor of 100 than that of the deformation oscillation.

2c : The asymmetrical valence oscillation has a relaxation time which is
greater by a factor of 100 than that of the deformation oscillation.

<l
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Fig. 23.1.-4

Density curves in the relaxation zone behind collisions in pure Hy0 at an
initial pressure of 1 mbar.

The curves designated with the numeral “1” , refer to a collision Mach

number of Ma = 2.1 and lead to a temperature of T =500K

1a: All degrees of freedom have the same relaxation time.

1b: Both valence oscillations have a relaxation time which is greater by a
factor of 100 than that of the deformation oscillation.

The curves designated with the numeral "2" , refer to a collision Mach

number of Ma=3.5 and lead to a temperature of T=1000K.

2a: All degrees of freedom have the same relaxation time.

2b : Both valence oscillations have a relaxation time which is greater by a
factor of 100 than that of the deformation oscillation.
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CO,-molecule was still 3.4%, in spite of the doubly decayed bending

oscillation. The same thought can also find application for the relaxation
zones after weak collisions; it also leads to the result that at low
temperatures, a separate actuation of each particular degree of freedom
can definitely not be observed with such experiments. Fig. 2.3.1.-2 and
2.3.1.-4 show that, at temperatures of about 1000 K, a solution for the
degrees of freedom for both measuring methods becomes possible if

T3 > 00T

From these investigations, one may conclude that the same relaxation time
can not be assumed for all vibrational degrees of freedom of a molecule
whenever the sound absorption measurements give only a relative
maximum and whenever the collision tube experiments give no indication
about a stepwise density curve in the relaxation zone. On the other hand,
one can expect from spectroscopic measuring methods that a solution of
the relaxation time for each particular vibrational degree of freedom is
possible. Such investigations are difficult, however, because many of the
necessary rotational oscillation transitions are of weak intensity, or they
cannot be clearly identified due to overlaps. Bethe and 7e//er [1}do
assume, however, that with molecules having several vibrational degrees
of freedom, those vibrational forms are actuated fastest, which show the
lowest characteristic vibrational temperatures. There also seem to be
cases in which the vibrational forms with higher characteristic
vibrational temperatures are preferably actuated. This was, for example,
observed by Rya//, et alii [21] for the asymmetrical valence mode of
C02 with N2 as collision partner.

There are now numerous experimental results available for the relaxation
time of the vibrational degrees of freedom of many gases. Often, error
quotes are given for various experiments which lie far below the scatter
of the experiments among one another. In the mean, the experiments
scatter by a factor of two, where the deviations increase with an increase
in the gas temperature. The detalls in Chapter 2.3. have shown that this
cannot have anything to do with the actual limited number of energy levels
for each vibrational degree of freedom. Based on this consideration, one
can also exclude the influence of anharmonicities, because these begin to
come into play only when very high energy levels are so tightly occupied
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that they make a significant contribution to the vibrational energy of the
respective degree of freedom. Consequently, it is easy to suspect that one
deals with effects which can be traced to a dependence of the relaxation
time upon the vibrational state or upon the deviation from the thermo-
dynamic equilibrium. In the following chapter, it will be shown that both
are valid.

2.3.2. Theoretical Calculation of the Kinetic Data,

For the theoretical calculation of kinetic data, it is necessary to
determine the transition probability that corresponds to the vibrational
excitation. If p is the transition probability for a single collision at a
relative velocity g, then the median transition probability P is obtained
by integration across the velocity distribution. When the transition
probability P is multiplied by the number Z of the total gas-kinetic
collisions, then the number of collisions is obtained that lead to a
vibrational excitation in the medium. If P is known, then the
corresponding relaxation times can be calculated according to Equation
(2.3.1.-4), and the corresponding reaction velocity constants according to
Equation (2,3.1.-1) or (2.3.1.-2).

Aimost all theoretical calculations of the transition probability are based
on quantum-mechanical expressions. With these methods of solution, the
functions are substituted into the stationary or instationary Schrodinger
equations, which are to describe the potential field in which the collision
partners interact with one another. The transition probability p canbe
determined with the help of the exact or nearly-exact solutions for the
Schrodinger equation. Closed solutions, however, exist only for certain,
simple potential functions which often don’t describe the real
relationships very accurately. Obviously, the result of such calculations
is, moreover, very dependent upon the form of the applied potential field.
Nevertheless, it is possible to examine the solution circumstances in
principle without committing to any particular potential field. The
necessary quantum-mechanical calculations for this were carried out by
Doring [2). They are limited, however, to the harmonic oscillator with
one degree of freedom. For the transition probability, one obtains on the
basis of these calculations

Py ) 2 li[() e G")""j], 1

j=0 (m j)!
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The upper summation limit | is given by the smaller of the two values n
and m which have the significance of vibrational quantum numbers. The
quantity G will be designated as the interference function in the
following description. It is obtained by a Fourier-transformation of force
F(t) which acts upon the oscillator whenever a collision occurs. In the
following observations, the collisions are treated as nearly elastic.
Consequently, the movement of particles during the collision becomes
symmetrical with respect to the reversal point. Thus, the interference
function now becomes

+

i ot
6 = ! -IF(t)'e ° gt
Zmhw,

which, by virtue of symmetry, is turned into a purely imaginary quantity.
The conjugate-complex value G* of the interference function is now
equal to the negative value of the interference function itself. In this
way, the transition probability is given by

m-=+n

eIt |Zr" s 'G'"Mj” 232-1)

In most cases, the results in the region of the most frequent relative
velocity of a Maxwell-velocity distribution are

6] << 1

and the relationship for the transition probability can be simplified, so
that the result is

~ m 2

Pman = a1 |6l (23.2-2)

The collisions which occur at higher relative velocities, do not result in
16l « 1, but they are less frequent so that, in general, there is no large



error with respect to the median transition probability Pm -n at

temperatures below about 1000 K. As can be seen from Equation (2.3.2.-2)
the transition probability is largest for collisions, in which the
vibrational quantum number changes by 1 .

An estimate will now be made, how the median transition probability
Pm-»n depends upon the kinetic gas temperature. For this, the

interference function G will first be determined.

As the potential field, a pure repulsive potential in the form of

viry) = w, . emalr-dy)

is enlisted. In it,s stands for the stiffness of the potential and y stands
for the vibration coordinate. The potential stiffness moves, for most
gases, in aregion of 2 A1 <o ¢<5A°1. The vibration coordinate y can
generally be neglected, compared to the action radius r, especially since
A < 1. Thus, the equation of motion of a central elastic collision

2

o

ro_ o dv(r)

v dr

2

is obtained. p stands for the reduced collision mass. With the limiting
conditions g( |t|=» o) =g, and r( jtl~>eo =0, one obtains the solution

2
M9, 1

2wy  cos he (%go t)

PR
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With it, the relationship for the interference function is obtained as

lel Zugok ag,
YZmhae W,
o] S\nh(ai—)
0

The expression 11w,/ &g, is, up to a numerical factor of the magnitude |,

equal to the quotient of the collision time and the duration of the
oscillator's vibration. Therefore, the expression nw,/4 g, » | is valid

for many applications, and by lntroduc_ing of the approximation

™,
o

. o, . 1. 7%

Slnh(&—gg) = 2'-’-
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one can simplify the interference function, so that the relationship

W !

&g |
6! 4mpo 2 e ag, ‘

a thuo

is obtained. The portion of collisions which occurs at a relative velocity
between g andg + dg, is

2 (=) ¢ . e 9
4z - (ZKT) 9 04

Thus, one obtains for the median transition probability

. Z(a) |
P = plg,) + dZ(gy)
J e

and, along with Equation (2.3.2.-2), one finally winds up with

A zﬂUO [V} g 2
© PRSI ¢ PR,
ag KT “o
P - T-Z . Igoat e ° dgﬂ

This integral cannot be solved in its closed form. The exponential function
possesses, however, a sharp maximum at location

2w, KT )1/3

* a2
9 oy

with the result for the temperature tendency being

_;[(21!00).2'_“_] -1/3

By neglecting a factor JT inrelation to the factor of the temperature-
dependent exponential function, one obtains for the temperature tendency

xE



of the relaxation time

Int .

-1/3
vib ~ T

This result was found using a different approach, back in 1936 by Zandav
and Teller [3], and was confirmed by numerous tests in a wide range of
temperatures. The interference function could be simplified under the
assumption that the vibration time of the oscillator is low compared to
the collision time. The obtained temperature dependence of the relaxation
time is also tied to this prerequisite. If the collision time is low
compared to the vibration time, then the simplification

e o,
inh —9 ~ e
sin (ugo) g,

can be introduced which leads to the median transition probability

M g2

2KT 70
’2 5 . =
P ~ T°¢. fgo e dg, constant

o

The temperature tendency for the relaxation time, in this case, then
becomes
o2

Tvib

The stiffer the potential field and the smaller the oscillator frequency,
the smaller the ratio between collision time and vibration time. The
greatest effect, however, should be ascribed to the temperature. At an
increasing temperature, the median relative velocity rises so that the
collisions with T .11/ T,o « | gain in importance and that the

temperature dependence of the relaxation time comes closer and closer to
the pure root law. Under these circumstances, |Gl « 1 is no longer valid.
One must, therefore, examine what the effects are when consideration is
given for the members of higher order in Equation (2.3.2.-1). The premise
is kept that the collisions proceed in an almost elastic way. With these
asumptions one obtains from Equation (2.3.2.-1) this relationship:

n

2
2 i g1
-6 1 -1)7-16]
Preran = (nef)-e o {Zo [("; )- 4 )(j+‘|)! ]} o’
3=
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If the value of the interference function G does not grow beyond 0.4, then
the number of the exponential function is always close to 1. Then one
obtains as the approximation of the second order

SES ("’”4612"\("#1)']514+nz(n+1)o%ls‘6 . .

Averaged across the velocity distribution, one obtains

o(2)

nelsn (n”)'P‘l(-Jt):-n("”)'Pl(lc))'(f snZ(nen)-p{1) o

‘*0
where the first order approximation is

Pmm . (n+1)~91(12,

The defining equations for the factors f and  are then

4
fMaxwe'Il(g) “lel"dg

P =

o, °Ha

2
Maxwe11(9) * 6" dg

6
fMaxwell(g) - 18]"dg

3
|
Ce—y °"-:a

2
fMaxwe‘ll(g) - 16]"dg

For the chronological change of distribution densities, one thus obtains the
relationship corresponding to Equation (2.3.-1)
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dx
— .z-pl)
dat

4 [n-¢'xn-1 - (n+(n+1) -¢)‘xn + (n"”'xnd] l‘

+? . [n(n-‘l) ¢x_¢ - (n{n-1) +n{n+t)<¢)x, N n(n+i) 'xn”]

- [n(n-1)2'¢’x“_1 = {n({n-1 )2+nz(n+1)'¢) Xt nz("”)'xnﬂ]} .

For the chronological change of the vibrational energy, one obtains

de dx
vib 1
- " R0+ E (n# ) dt

n=0

after calculation of the sum and rearrangement of the members

de
ib (1) .
— zp,*oaeé{ (ni)on

-9. [n(nﬂ) ¢ -n{n- 1)]

+n- [nz(n+1)-¢ - n(n-1)2]}- X,

Here again, ¢ stands for the Boltzmann factor exp ( -6/T). Under the

assumption that there is always a Boltzmann distribution, the distribution

densities are given by the relationship

n
x, = (1-¢,,)-d>v

Init, ¢, stands for the Boltzmann factor exp ( -6/T,,), where T, is the

momentary vibration temperature. One thus obtains, after once more
adding and rearranging the various members, the chronological change of
the vibrational energy

de . 1424 )
JE‘Z'P$1‘)).R.G.(1'¢)'(;°—' ¢V).[1_(f‘ 2¢v *T\'Z( * \ ] .‘

dt ’ i-¢  1-¢,

Finally, if for ¢/(1-4) the dimensionless equilibrium energy e, ;,/R6 is

substituted, and ltkewlse the dimensionless momentary energy for
d/(1-9,),
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then one obtains

de

vib o 7. (1) (yiay-(m gy 90l
0 7 b{1) (100 (g ey [ 902

vib yib ]
. 3——— .
o +n-2(1s o ) ’

Thus the precise result for the vibrational relaxation time in the
approximation of the second order is the relationship

L2, !

vib e . e .
. ol L rilay. [l @.o_vib . viby] |
Z-Py o (1-¢) [1 ‘PzRe +n2(1+3 o )]

while the result of the first approximation is

) D R

T
i z-P(,"l-(w)

According to Equation (2.3.2.-3), the vibrational relaxation time depends
not only on the gas temperature, but also on the momentary state of
oscillation. With this condition, one can explain the temperature-
increase-related, rising width of scatter of the experimental results. An
especially large deviation must, therefore, be suspected between
experimental results which were obtained with the collision tube- and
sound absorption methods, because with the sound absorption method, the
deviations from the equilibrium are weak, but with the collision tube
method, the deviations can be very large. This effect can be easily proven
from literature. The available results of both measuring methods cross in
a temperature region of about S00 K to 1000 K . With the aid of Equation
(2.3.2.-3), one can now determine the quotient of the actual momentary
relaxation time T and the relaxation time T for minor deviations from
equilibrium at equal gas temperature. One obtains

I . 1-?-2'5471.2(1.,3-:)
T 1-9-2e+n-2(1+3¢)

Here, € is the oscillation energy, standardized with RO . For most
gases, one obtains { > 3m in the valid region of this approximation. In
this case, T/T< | is always valid, independent of € and € .
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The exchange of energy between translational- and vibrational degrees of
freedom takes place so much more rapidly, the farther the system is away
from equilibrium. This was also observed by Aur/e [4] in expansional
flow of nitrogen, and by Johannesen, et ali7 [S] in the relaxation zone
after gas-dynamic collisions in CO»-gas at collision Mach numbers

between 1.4 and 4. For large values of the interference function G, the
approximation of the second order also loses its validity. Equation
(2.3.2.-3) can then no longer be applied, since the integration of the
transition probability across the Maxwell distribution takes place, to a
large extent, in velocity regions where the quantity of the interference
function G exceeds the value of 0.4 This happens when the gas
temperature exceeds a certain value which, for example, for the
deformation oscillation of CO, comes to about 700 K. Beyond this limit,

one would have to take terms of a higher order into account which would
necessitate an effort that would no longer justify an analytical solutfon.
For |Gl » 0.4, the transition probability does not, however, climb
monotonously, but it shows a resonance structure as presented in Fig.
2.3.2.-1 for the bending oscillation of the CO»-molecule.
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Fig. 2.3.2-1
Graph of the transition probability for the deformation oscillation of CO,

over the relative velocity.
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Fig. 2.3.2.-2

Graph of the median transition probability for the deformation oscillation
of CO- over the gas temperature.

As can be seen from Fig. 2.3.2.-2, one does not obtain any more

Frstin = (met)epy

for the median transition probability at high temperatures but rather, in
approximation

LS I LS BPY

This opens the possibility for the examination of the dependence of the
relaxation time on the gas temperature and on the oscillation state, even
at higher temperatures. In order to remain general, the following will
have to be understood in terms of temperatures which are several times
the characteristic oscillating temperature. From Equation 2.3.-1, one
obtains the realtionship
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dxn
at Z'P1,o'[xn+1'(“¢) Xn*9o Xn-l]

(23.2.-94)

After multiplication by level energy eyp(n) = R* ©+(n+ 1/2) and adding
across n from O to e, one obtains

de,. -(1-
vib = Z.P1,O.R.0.[x° (1 ¢)]

The differential quotient disappears for Xg = 1 - §, which is a sufficient

enough condition for applying the Boltzmann distribution. By employing
the Boltzmann distribution x, = (1 -y)* y" in Equation (2.3.2-4), one

obtains

-y - 2.9y g (1-3) - [y - (100) -y os]

in the state of equilibrium, the left side of the equation disappears since
9 = 0, and one obtains, with the aid of the right side of the equation, the
only physically meaningful solution y = ¢. This means that at the
beginning and toward the end of the change in state, there is a Boltzmann
distribution. During the change in state, there can be no Boltzmann
distribution, because the left side of the equation has the oscillation
quantum number n, and the term in the large bracket does not disappear.
From the foregoing considerations, the relaxation times can now be given
at the beginning and at the end of the relaxation zone without the
necessity for solving the differential equation for distribution density.
For the beginning of the relaxation there is with

Tyib ~ Svib'?)
(d Bvib,
at o

Tvib(°) :

the relationship

1
Tipl®) = TR -0 (i-e)

and toward the end of the relaxation with
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lim Eib " Cvib

Tvib(m) * evib*gvib de .

vib
dt

the relationship

1
Tyipl®) 7
o 1epy e (1-0)

4’ o Stands for the Boltzmann factor at the geginning of the relaxation and

4’ stands for the Boltzmann factor which is formed with the gas
temperature. At an equal gas temperature, the following relationship
results for the quotient of T, ;p(0) and T p (e0):

-‘vib(O) - 1-¢
T\lib(.) t-¢

"o

If one uses the corresponding vibrational energies in place of the
Boltzmann factors, then the result for the relaxation time at the beginning
of the process is

eyiplo)
! . RO
z. p‘ o.“ -¢) | ‘ev‘ib(o) ‘ (232"’5)

RO

Tyiplo) =

and for the relaxation time quotient, it is

’vib(o) . elo)  1+e(=)
Tvib(w) e(=) 1+¢(o)

where € stands for the dimensionless oscillation energy e, ;,/R6. In

contrast to Equation (2.3.2.-3), there are always varying resuits for

compressional and expansional flow with Equation (2.3.2.-5). According to

Equation (2.3.2.-5) there is always, at high temperatures after

compressional collisions, a relaxation time which is smaller than the

relaxation time at a slight deviation from the equilibrium. For expansional

flow there is, however, always an increase in the relaxation time.

Experiments in the collision tube have confirmed this behavior [20]. 3¢
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Fig 23.2-3
Graph of the relaxation time after a collision in pure CO4 at a collision

Mach number of Ma = 5.01, an initial pressure of 0.3 mbar, and an initial
temperature of 293K.

In Fig. 2.3.2.-3, one can see a typical graph of the relaxation time across
the relaxation zone for the bending oscillation of the CO,-molecule. At

the beginning of the relaxation, the relaxation time fis still definitely
smaller, as expected from earlier results. Toward the end of the
relaxation, on the other hand, relaxation times are measured which show
good agreement with earller results. According to Equation (2.3.2.-3), the
deviations of the relaxation time from the relaxation time at slight
interferences are the larger, the smaller the characteristic oscillation
temperature of the corresponding degree of freedom is. This appears to
explain why the relaxation time measurements in CO, show an increasing

scatter with an increase in the gas temperature. Because of the relatively
low characteristic temperature of the bending oscillation of 960 K , one
must expect deviations in the relaxation time at slight interferences
which can reach one order of magnitude or more. There is only little
known from published literature, where the changes in the relaxation time
on account of the decrease in gas temperature in the relaxation zone are
considered. Many measurements, therefore, deal with a median value for
the entire relaxation zone.
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It, therefore, always appears advisable when using experimental results in
kinetic models, to take possible errors of up to one order of magnitude
into account for the relaxation times. At temperatures of up to 1000K,
experience has shown that the experimental results scatter by a factor of
two.

2.4 Interferences of the Boltzmann Distribution

With the help of Equation (2.3.-1), one can describe the change in the
distribution density of the various energy levels of a vibrational degree of
freedom as a result of VT-collisions. Now, an examination will be
conducted into how the transition between two states O and 1 takes
place, when the distribution densities of both states can be described by
Boitzmann distributions which correspond to the kinetic gas temperatures
Toand T4. From Equation (2.3.-1) to (2.3.-3), one obtains, with the

abbreviation y; = exp(-6/T;), this relationship
X, = @ '{" IR AT S Iy [n+(n+1)- y1]- X + (ne1)- xnﬂ}

Based on the assumption, that the solution is a Boltzmann distribution
function which corresponds to a temperature T between T0 and TI s

therefore, the equation

x(t) = (1-y) -y"

is set up with y = y(t). By insertion into the equation system, one obtains
for y the differential equation

y = o (1-y) -y, -y)

This equation is now independent of n. It means that during the entire
change in state, there is a Boltzmann distribution. Under consideration of
the limiting conditions

)’(t=0) = Yo ]
y(t"‘”) = .Y4|
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the solution of the differential equation becomes

-o.(1-y.l)-t
(¥o=1)ryy-lyg-vy) -e
y =

—a{1-y,) 't
(yg=1) = (yg=v,) e 1

The effect of an additional excitation from VV-collisions will now be
examined. Let the test gas consist of a mixture of two gases, with one
effective vibrational degree of freedom for each gas. The changes in the
distribution densities on account of VT-collisions are then given by

Xy = (o A+ -8) {n e g (T x

) [n *{ne1): °x(T1)]' X+ (041" x4}
and

Yo = (B,"A+B -B) -{n-oy(Ti)-yn_,

R [,H (ne1): oy(T1)] Yt (n+1)- yn+1}

Yn Now stands for the distribution density of the admixed gas, and the
Boltzmann factors are givenby ¢(T j)' The designations A and B stand

for the mole fractions of the two gases in the mixture. The reaction
velocity constants are describedby & ; and B, ‘ where i stands for the

collision partner. In addition, the 1t Jevel of the oscillator x and the
mt level of the osciliator y are to exercise an influence against each
other. In addition to the changes in distribution densities on account of

VT-collisions, a distribution density change,therefore, takes place which
becomes for the oscillator x

ks B gy vy ypy)

Here, X Is the the reaction velocity.constant for this process. An
expression for the solution

n
X, = (1 -¢x) by
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and

n
Yn (1-¢y)-¢y

now only yields for n=1 or for n®m a differential equation for Qx or
¢y , independent of n. For n= 1, one obtains for the oscillator x the
following expression

b« (g heay (-0 [0 -8,]
N TICE S R RN (ET S RERARY CELW

/ [1 ~¢XM-(1 +1) °¢x‘]

For this reason, one cannot get only one valid solution for each n, neither
for ¢, nor for ¢y . This means that the Boltzmann distribution receives

interference from the VV-collisions.

A closed solution of the differential equation system is not possible, and
the extent of the interference can, therefore, not be determined without
numerical methods. It is possible, however, to estimate when an
interference from VV-collisions is substantial. Such is the case when the
delivered energy cannot spread fast enough across all energy levels. Thus
one obtains as the criterion for noticeable interferences

X > x
w o hr

The lowest energy levels are the easiest to disturb because they have the
greatest density. The case most advantageous for an interference, is
1 =m= 1. Thus the criterion now becomes much simpler

Y-B-(xo-y,|-><1 -yo) >(¢X'A+ay‘3)
'{¢X(T1)'x°-[1+2¢x(T1)-‘i -x1+2x2}

If a Boltzmann distribution prevails up to the noticeable introduction of
the interference, then one obtains
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6,(1y) - [1 can (1)) -0, 0207
X B Y - v d - -
(1-9)) -, - (o, -8)

An interference can take place only when ¢y - ¢y > 0. This, in turn, can

only happen when the oscillator y is already substantially excited and,
therefore, the expression

o Aroy BB AR B (24-1)

must be valid. Here again, the most advantageous case for an interference
is ¢y « @Y , S0 that one obtains

4

2
Y > (u "A""(l ) . ¢X(T1)-L1"’2QX(T1)] .@x,z(tx
X B y - -
(t-e) 0

Based on Equation (2.4.-1), one must expect that ¢, is very small against
#x(Tl) and against 1. A large denominator is also advantageous for the
interference. The denominator for ¢y = |/2 becomes maximal so that one
eventually obtains, as a (rough) estimate, the following expression

V> (o '%-buy) 4.8 (T,)

(24-2)

Based on Equation (2.4.-1), one must again expect that ¢,(T) is relatively
large. The Boltzmann factor QX(TI) cannot, however, exceed the numerical

value of 1. As criterion, the following expression remains along with
Equation (2.4-1)

V> lag-Bea)a (24-3)

This condition, in no way, poses any unusual demands. In many cases, the
reaction velocity constant of VV-reactions is higher than the constants of
the also participating VT-reactions. There are, however, only very few
cases where the validity of the Equation (2.4-1) is ensured. An accurate
explanation for the extent of interferences can only be given by numerical
calculation. One can, however, suspect a noticeable interference when
conditions (2.4.-1) and (2.4.-3) are simultaneously fulfilled.



3. Application of the Model on CO»=H0-N»-05-He Mixtures.

In Chapter 2, the kinetic equations for the energy exchange in molecular
gas mixtures were formulated in general terms so that an application for
any given gas mixture is possible. Theory requires that for all gases of
the mixture, the same number M of energy levels per vibrational degree of
freedom be considered. Therefore, the number M orients itself in
accordance with the highest necessary vibrational degrees of freedom. M
can then be found with the help of the requirement that the energy content
of the respective degree of freedom, up to a certain error, is equal to the
same gas consisting of harmonic oscillators with M energy levels. This
energy content is obtained by summation across all energy levels M as

"

ey " R@~Z (n+1/2) + %,
n=9Q

If the distribution densities can be described by a Boltzmann distribution,
then one obtains

= Ro. J-exp(-e/m)
1 - exp[-(Me1). 0/T]

vib

M
. Z'(nﬂ) < exp(-n- o/T)

n=0

After calculating the summation and after rearranging various expressions
one obtains for the absolute vibrational energy

. ro.f1,expl-0T) Lexpf-(Me1) - O/T)]
€vib RO {2 1 - exp(- &/T) (Me1) |-exp[-(M+1)-0/T]J

The finite number M of energy levels limits the maximum energy
absorption to

1im . )
e . = "e . = 1/2ZRO-(2ZM+1
V‘bmax T+="vib

The vibrational energy stored in the molecule cannot exceed the
dissociation energy D since, otherwise, the molecule falls apart. If one
defines a characteristic dissociation temperature 8p = D/k, where k is

the Boltzmann constant, then with the characteristic vibrations 6 j- the 42



following requirement is given by

J
(+1/2) -0, 5 8 .
L (o105 (3.-1)

Here, J stands for the number of vibrational degrees of freedom of the
respective gas. For such a gas, the portion of molecules in the vibrational
ground state amounts to

i i iexp(ZnO/T)

n1-0 nz-o n

The summation limits N; must always be chosen in such a way that

Equation (3.-1) is satisfied. All of the stored vibrational energy in the gas
is thus obtained with

J N‘ N2 NJ J .
. - . |
&b " *oron..., ‘R Z{ ; Z }: [("1’ + 1/2-exp( an Oi/T)_l}'
i=1 ny=o0 n,=0 n;=o j=1

Here again, the summation limits must be chosen so that Equation (3.-1) is
valid. For molecules with only one vibrational degree of freedom, these
calculations are simple. For three-atom molecules, however, there are
already, in general, three vibrational degrees of freedom, with
abnormalities not included. An n-fold abnormal degree of freedom must
be treated like n normal degrees of freedom so that, for example, C02 has

J = 4 degrees of freedom. In addition, one has to pay attention to the fact
that with abnormal vibrational degrees of freedom, not all combinations of
quantum numbers are possible. The selection rules for CO, are listed in

Chapter 3.3. Calculations of the vibrational energy can then be carried out
only with the help of simpified assumptions or in a numerical way. A
possible simplification consists in the assumption that within the
molecules, a continuous exchange of energy takes place which means that
each degree of freedom can take up the same maximum energy content. For
the various degrees of freedom one, therefore, obtains the number of
energy levels to be considered as
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Fig. 3.-1 to 3.-3 show the vibrational energy content of CO,, calculated
in three different ways:

- Harmonic oscillator with indefinitely many energy levels.

- Harmonic oscillator with total energy limitation for all degrees of
freedom.

- Harmonic oscillator with energy limitation for the individual
degrees of freedom

15000

e
raad

10000 |

0 5000 0000 TIK] 15000

Fig 3.-1

Plot of vibrational energy of the symmetrical valence oscillation for CO,

versus the vibrational temperature.
1 . Harmonic oscillator with indefinitely many energy levels.
2 : Harmonic oscillator with limitation of total energy.

3 : Harmonic oscillator with limitation of energy for each vibrational
degree of freedom.
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Fig. 3.-2

Plot of vibrational energy of the deformation oscillation for CO, versus

the vibrational temperature.

1 : Harmonic oscillator with indefinitely many energy levels.

2 : Harmonic oscillator with limitation of total energy.

3 : Harmonic oscillator with limitation of energy for each vibrational
degree of freedom.
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Fig. 3.-3

Plot of vibrational energy of the asymmetrical valence oscillation for COo

versus the vibrational temperature.
I : Harmonic oscillator with indefinitely many energy levels.
2 : Harmonic oscillator with limitation of total energy.
3 . Harmonic osclllator with limitation of energy for each vibrational
degree of freedom. =



The question is now about the number of energy levels M j which, when

the simplified model is used, shows a lowest possible deviation compared
to the model with total energy limitation. One finds for CO, at

temperatures of under 10000 K

for the bending oscillation My=35,
for the symmetrical valence oscillation M =18,
for the asymmetrical valence oscillation M3 =10.

Thus, there are at least 36 energy levels up for consideration in a kinetic
mode! which contains CO,. For the system CO5 - Hy0 - N, - 05 - He at

gas temperatures of under 10000 K, the conditions are given in Table 3.-1.
For H,0, only the bending oscillation was taken into account because the

other two vibrational forms show very high characteristic temperatures.
The consequence is that the predominant portion of the Hzo—molecules

find themselves in the ground state of these vibrational forms.

Table 3.-1
Number of energy levels to be considered.

The calculation of the reaction kinetics is done numerically. Due to the
magnitude of the system, this can only be accomplished with the help of a
computer. Programming of the general formulae which were developed in
Chapter 2, is not always advantageous. The three-dimensional reaction
matrices Ayy and Ay , for example, contain by necessity numerous zero

elements. Also, when there are substantially differing values for the
number M | of energy levels of the degree of freedom j , then these

general formulae don’'t necessarily offer an advantage. But this is not
valid anymore when computers are available which can work more
effectively at total vectorialization. The special formulation was
preferred, however, since there was no vector computer available when
the calculations for this paper were made. Therefore, only that number of

energy levels listed in Table 3.-1 for each vibrational degree of freedom, Y
was taken into account.



3.1 Reaction System and Numerical Treatment

The pertinent reactions were chosen, based on the tables by Taylor,
Bitterman [6]. In the following scheme, the respective collision partner
carries the designation M:

VT-Collisions: M= CK);Z , }+:f) R ":2 , ():z , He

il

09y e mr 3 en = oo, ) e s gatas
€0, 9 ug) + M 67 am s 0o, uy) oM 4 gatess
J
3

il

CO.(J-1)(V3) + M+ 2349 CM..I CO,(J)(v3) + M

—
—
—
P

HaO(J-”(\’Z) + M+ 1595 Cfﬂ‘1 Hzo(j)(\)z) + M =14+ 25
N, 1) s M+ 283 enl =y, ) M 5 J=1433

i - 3 !
o, messsen == 0,8 g1

co,Miwy) + .UV 521y 33

il

002(0)(\)3) s Nz(j) ' + 18 Cm-

0, Diuy) + RN 4 Tt = 6 Diup ¢ RS IR It

fh

0, ¢ 0, B u)e 270 em”t = 0,(" + 0,9y,
N,(o) +0,(1) + 775 cm":e N,“) +0,(0)
O ol e et = D k0 @y

1

H.o(o)(\h‘z) .« 0,(" . 39 e H.O(”(vg) . 0,\0)

VV-Collisions (intramoleculary M=CO0,,Hy0,N,,05, He

C01(3)(\>2) e mgen = 00, v e m

0, D vy s mer0zem ! = co,(V(v,) +

The last reaction is of special significance. it deals with the most
important Fermi resonance reaction of the C02—molecule. One of the

fastest and, therefore, also one of the most important reactions is the
vibrational energy exchange between CO, (V=) and No. Higher-excited



No-molecules can participate in this process, according to Kieen, Mueller

[18]. This applies mainly to all VV-reactions, but in this special case, a
disturbance of the Boltzmann distribution is to be expected because of the
high reaction velocity. Therefore, all nitrogen levels were included in both
reactions which pertain to this energy exchange. Thus, the system at hand
consists of 157 dependent variables which are designated as follows:

7SN D B Total density
2 1 Gas temperature
v( 3 he Vibrational energy
vib .
y( 4) 3
E ' [coz(J)(vz)]
y{ 22)
y{ 23)
: [c0, (v,
y{ 58)
y( 59)
: o, 9w,
y( 69)
y( 70) 7 Individual concentrations
y{ 95)
y( 96)
: i, 95
y(129)
y(130)
. [oz(J)]
(156) .
¢ Path of particles
y{(157) X
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The reactions are counted as follows:

1- 18
19 - 53:
54 - 63 :
64 - 88 :
k 89 - 121 :
122 - 147 :
148 - 180 :
181 - 213 :
214
215 :
216 :
27
218 :
219 :

co,(j“)(v,) + M+ 1388 cm
CO,(J‘”(\’Z) + M4+ 667 cm”
Coz(j-1)(V3) + M +2349 cm”

Hzo(J“)(vz) + M+ 1595 cm”
v (1)
02(3'1)

+ M+ 2331 em”
+ M+ 1556 cm”
¢, ®(vy) + 8,130 4 18 o
CO,(Z)(\)3) + Nz(j'”+ 7 cm”
0, (" + c0, B (v,)s 270 e
NGO o, D 75 e
N, (0) 4 H,o(‘)(v2)+ 736 cn”
10t v,) + 0,014 39 cn”
c0, Pt + M 4416 e

CO,(Z)(VZ) +M  + 102 om”

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 2 [

12000 U0 20 20 ' R A (O

CO,(j)(v.l) + M
co, 9 (v,) + M
COZ({)(v3) .M
H,o(J)(vz) +M

NG

0, (4 N

¢, (vy) + N, 151)

o0, My e @
0, + 20, V(v,) |
W (O

W e

H'o(i)(\)z) + 0!(0)
co,(')(v3) . M
co,{V(v,) +

The heat effects of the individual reactions can be calculated from the

intermediate wave numbers ¥ according to

AE-NA'h.c

v = 11,964

» T J/mol

In this equation, V must have the unit cm” '.
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For the individual reactions one obtains, therefore:

1- 18 16 606 J/mol
19 - 83 7 980 J/mol
54 - 63: 28 103 J/mol
64 - 88 : 19 083 J/mo}
89 - 121 . 27 888 J/mol

122 - 147 : 18 616 J/mol
148 - 180 : 215 J/mol
181 - 213 78 J/mol
214 3 230 J/mol
215 ¢ 9 272 Jfmol
216 : 8 806 J/mol
217 : 467 J/mol
218 : 4 977 J/mol
219 : 1220 J/mol

The system has six different vibrational degrees of freedom with the
following characteristic temperatures:

CO;(V1) 1998 K

(v,) 960 K

(vg) 3381 K
HO0(v,) 229 K
N, 3355 K
0, 2240 K -

From the motion equations in Chapter 2.2. , one obtains
&lp = ;?tesi—? 3 »

u = UZ'DZ/D = 9(157) ’



"

byip = & beyr 0y 0

Q stands for the energy per volume, brought in from the outside. Such an
energy supply is possible, for example, by the swelling, the sinking, or the
action of a high-frequency excitation. According to Equation (2.2.-1), y is

the momentary flow velocity, and index 2 designates the initial state.
From Chapter 2.1. it follows for all components that

¢ = ci-o/p+znj

The second term on the right side takes the conversions in the individual
reactions into account. The first term on the right side, on the other hand,
stands for the concentration changes caused by state changes. The
quotient p/p will be abbreviated witha B in the following examination.
Thus one obtains the following differential equations for each of the
individual components:

y( 4) = B-y( 4)-D1

y( 58) = B-y( 5)401-Dz+0219

y(O §) = B-y( j)*Dj_4-DJ._3 i § =670, 21
y(22) = B-y(22)+Dyg

y( 23) = B-y( 23)-Dyq+Dyy,

J24) = B-y(20)+D,9-Dyp

y 25) = B-y(25)+Dy5-Dpy =Dy1q-0pyg
( 26) = B-y( 26)+Dy, =Dyp-Dyyg
yj) = B-y(j)+oj_5-oj_4; j=27,28,..., 57

y( 58) = B-y(58)+Dg,

=Y



y( 59)

y( 60)

y( 61)
y(3)
y( 69)
¥( 70)
y( 71)
y( i)
y( 95)
y( 96)
y( 97)

y(3)

y(129)
y(130)

y(131)

y(156)

i8¢

Byl 59) -Dgq- D 0
' 148
180 2123

Byl 60) -Dge=Dgge ) D+ Dy+Dyg

1e8 18}
213

B - y( 6')"’55'”55',.2;"‘

B-y( i 140,605,535 J= 62,63,...,68

B -y( 69) ’063
B - y( 70) -Dg4 + Dy15 - Dgy7

B -y( 71) +Dgq D¢ - D45+ Dyyg

B.y(J)’Dj_7'DJ_6; j*72p

B-y( 95) +Dgg

B:y( 96) -Dgg+0y4g-Dygy - Dy~

B-y( 97) +Dyq ~0g5- D143 -Dygg*0

73,...,9%

D216

-D +D +D

181 7182 7 215 T 216

B-y( J)+0; g-0; 705,51 *05,52* 05,84 ~Ojugs

By(129) +Dy5y ~Dyg0 * 0213
B - y(130) -Dypp - Dyyq + Dpy5 + 0yy7

B - y(131) +Dy55 - D153+ D44 D15

j = 98,99,...

~Da17

By §)+D; g=D;g s J=132,133,...,155

B - y(156) +D,4

,128

S22



For the conversion rates of each of the individual reactions one obtains:

(% KJE,}' TR [co,(j'”(v1)] -(% fjf; YW {:co,(j)(\a1 )]

(2 8 Gomy [c0. 4 tu)] S - [c0. 93]

i=19 ¢+ 53
J=1i-18

SIEATME [co.“'”(%)]-(% B3+ [eonPrug)]

1 =544+ 863
J=1-53

K2 (3-1)
(% ny 1040 0v] - (2 E Ry - [0 0]

i =64 + 88
J=1-863

(Z K- M Ay [N,(J"”] (Y R-j’-‘M <Ay - [N,(j)]

i=89+ 121
J=1-288

(Z AMYME [02(1-1)} _(§ RO, - - [o,(j)]

i =122 + 147
J=i-12

?‘C:“"- [co,(o)(v3)]-[nz(j)] - kBN [co,(”(v3)} -[N,(J"”]

= 148 + 180
jJ=1-147

53



0, = ;Zc:i-N. [CO,(Z)(\’3)] . {N,(j'”] - EZCJ-N_ E:O,(”(v3)] . E‘z(j)]!

181 + 213
i- 180

i
j
Dyyq = K072, [o,(o)] . [co.")(vz)] . po-t2, [o.“)] , [CO,(O)(\)Z)]
D5 = KN-0, [N.(o)] . [02(1)] L N0, j:n,“)] . [°:(°)J

Dyyg = KN 12 E"'(D)] . [H,o“)(vz)] . ENHZ, [N,“)] . [H,O(O)(vz)]
Dy, = k20, [H,o“’)(vz)] . [0.(1)] L pHe-0 [H,O(”(vz)] i [0'(0)]

Dyyg (%EMCZ'C:‘-AM) - [co,“)(vz)] - (% 20 - [CO,(”(\:;)]

Am denotes the momentary concentration of gas type M. The indexing of
the reaction velocity constant k

f..
at .l?, k refers to the direction of the reaction,
and
at k3D refers to the participating degrees of

freedom.
The degrees of freedom are designated with the abbreviations

Cl for COp(¥)),
C2 for CO2 (V2) ,
C3 for C02 (03),
H2 for H,0(V,),
N for Ny,
0 for 0,.

The indexing of the reaction velocity constants at k j-M refers to the
participating end level j at VT-reactions and the collision partner M
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who evolves unchanged from the reaction involving VT-reactions. An
exception is made by the reactions of the VV-interaction between C3 and
N. There

k,C3'N designates the reaction with the heat effect 18 cm", and
k2C3'N designates the reaction with the heat effect 7 em™1

With respect to the electrical excitation of the vibrational degrees of
freedom, the reader is referred to Chapter 3.2. and Appendix B.

The solution of the described system of differential equations is
performed numerically with the help of the Runge-Kutta Method. A control
for the interval was built into the computer program, so that the relative
accuracy with which each time interval is calculated, always remains
within the limits (IO'5 , 10'7). Numerical difficulties occurred only at
those locations where the electrical excitation of the vibrational degrees
of freedom ceased, or where the effect of radiation fields begins or ends.
There, the interval control can fail when these locations are situated
between two time intervals. The interval control then swings back and
forth between decrease and increase of the interval. This deficiency could
be remedied in that the interval control at these locations was blocked
whenever necessary, enabling the calculation past these locations by using
the smaller interval. Thereafter, the blockage was lifted again. In this
way, a satisfactory calculation accuracy is always assured.

3.2. Qverview Over the Kinetic Data

In Chapter 2.3.1.,, it was demonstrated how one can produce reaction
velocity constants for the individual energy exchange reactions when the
relaxation time or the median transition probability is given. For
VT-reactions, one would, therefore, expect a temperature dependence in
the form of

kK = A-/T- exp(-B-T'1/3) |
Experience shows, however, that in this form there is no satisfactory fit

to the experimental results. For VT-reactions, therefore, Blauer,
Nickerson [7] propose the form
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Ink = ass. 1713, ¢. (T"/3)2 (3.2-1)

It is evident that with this expression a satisfactory fit to all
experimental results for VT-reactions is possible. The coefficients A, B,
and C, proposed by Blauer, Nickerson were not used, however, because they
were developed mainly with the aid of purely theoretical data by Herzfeld
[17], and these data do not show good agreement with more up-to-date
measurements. Instead, those coefficients were used which had been
developed with the help of an interactive, graphical computer program by
means of the fit of Equation (3.2.-2.) to experimental results. These
coefficients are listed in Appendix A. For some VT-reactions there are
only very few experimental results available; or only those experimental
results are available for some of the possible collision partners with
respect to the model at hand. In these cases it was possible apply the
systematic approach by Millikan, White [8). They give as the general
formula for the relaxation time of VT-reactions

n (1,5, * 0 [sec-atn]) = 1,16 - 107 /5 -0 3.(r71/30,015.41/%) - 18,02 (3.2.-2)

where J stands for the reduced collision mass and © for the
characteristic vibrational temperature of the excited collision partner.
This theory was tested by my own investigations where it was determined
that the constant with the value of 18.42 wasn't valid for all reactions.
One can list for each reaction its own constant so that the differing
results for various collisions partners can be reproduced with sufficient
accuracy by Equation (3.2.-2). This method was also applied to the
velocity constants for the Fermi-resonance. For this reaction, only very
few experimental results are available; but they fit very well into the
systematic approach. Equation (3.2.-2) can be reduced to the general form

in hvib .p) = A* + B* . T'1/3

From it, we obtain for the reaction velocity constant in accordance with
Equation (3.2.-2)



v T -i/3 |
Kk = A+In|]l——oo—v—ouw—| -B~-T .
In v [1 - exp(- o/T)]

The coefficients for the VT- and the V-reactions which were developed
with the help of the systematic approach by Millikan, White [8], are also
listed in the appendix. In the remaining cases, where there were neither
experimental results available nor help from the systematic approach by
Millikan, White [8], the velocity constants were determined with the aid of
theoretical calculations. Using known experimental data, some of the
familiar theories from literature were checked for their suitability.
These were the Schwartz-Slawsky-Herzfeld Theory [23], and the theories
by Herzfeld, Litovitz [22], Nikitin [24], and Widom [14]). The best
reproduction of the experimental results was achieved with the theory of
Widom [14]. The velocity constants, determined with this theory, were
subjected to the same procedure as the experimental results and produced
in the form of Equation (3.2.-1). Coefficients A, B, and C, thus developed,
are also listed in the appendix. The temperature dependence of the
reaction velocity constants for VV-reactions varies widely. According to
Taylor, Bitterman [6], one generally obtains

K ~VT.onm

where the temperature dependence of the transition probability P can
show differing tendencies. Generally, however, one can expect that the
median transition probability with VV-reactions depends less upon the gas
temperature than is the case with VT-reactions. For VV-reactions in this
paper, the expression

nk = A+B-VT+C - WD (3.2.-3)

is given. The experimental resuits can be satisfactorily described with
the aid of Equation (3.2.-3). Coefficients A, B, and C which were also
determined by using a graphical match process, are listed in Appendix A,
just like the other constants for the VT-reactions. The V-reaction
between the vibrational states C02(3)(02) and COQ( ! )(\?3) was treated in

the same way as the VT-reactions. The reaction velocity constants of the
VT-reactions stand for the reactions between the vibrational ground state
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and the first excited vibrational state. With the help of Equation (2.3.-2)
and because of K ~ P (median transition probability) one can calculate all

other reaction velocity constants.

3.3. Small Signal Amplification

In a formal way, small signal amplification is nothing else than the
negative absorption coefficient: if a radiation field is superimposed over
a flowing gas mixture, and if the absorption coefficient for this radiation
field becomes negative because of an inversion, then the radiation field is
intensified by the passing of the gas. A prerequisite for the observation of
the small signal amplification is that the radiation field is sufficiently
weak so that the population densities of the participating energy levels
are not significantly changed, and that no significant amount of energy is
pulled away from the gas mixture by radiation. The small signal
amplification is an important quantity which permits an evaluation of
maximum laser efficiency which can be withdrawn from the gas mixture.
The small signal amplification is given by

x'lz<'a'k gj.) L
g - _J_B_ﬂj_.f(v,vjk)'(nj-r\k o .|

A ik stands for the wave length of the radiation transition j-rk, 3jk
stands for the spectral probability of spontaneous emission, and f(V,v jk)
stands for the line form function. Quantities Njk and 9j.k stand for the
population density and the weights of the upper and lower laser levels.

The line form function is subject to three influences:

- Natural line width which is created by the statistical distribution
of the optical transition probability. The natural line width does
not depend on pressure and temperature.

- Doppler broadening which is created by the presence of a
molecular velocity spectrum. The Doppler broadening of a line is
proportional to vT.
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- Collision- or pressure broadening which is a consequence of the
statistical distribution of the molecular collision frequency. The
pressure broadening of a line is proportional to p/ JT.

For the 10.6 u - laser line of CO, (transition 00*1 - 10°0), the following
values resuit:

Natural line width A "N = 67 Hz,
Doppler width (300 K, 45 mbar) AVp = S8MHzZ,
Pressure width (300 K, 45 mbar) A vp =323 MHz .

Under laser conditions there are going to be smaller values for the line
width. This is not, however, within the scope of this paper. At ambient
temperatures and at higher temperatures, the natural line width is always
negligible compared to the two other influences. In thinned gases, the
pressure broadening is often small compared to the Doppler broadening,
but depending on temperature, it can also reach the same magnitude. If
one takes into account only the Doppler broadening when determining the
line form, then the error isn't 1arge even in the latter case, because the
line form in the vicinity of the middle of the line is primarily determined
by the Doppler broadening. The line form function at the middle of the line
is then

In the following, the term “small signal amplification™ is meant to mean
the small signal amplification in the center of a pure, Doppler-broadened
spectral line. Weight ¢ j of an energy level j is the number of solutions

of the Schrodinger equation which exist for the corresponding energy
amount; it, therefore, corresponds at the same time to the degree of
degeneration. The CO5-molecule has three vibrational degrees of freedom,

one of which, namely the bending vibration, exhibits a twofold
degeneration. Each given vibrational state can, therefore, be described by
four quantum numbers which are expressed by

"1"2]"3‘

where 1 stands for the quantum number of the angular moment which is
tied to the quantum number v, by the rule 59



Vo even =3l =v,, vy-2,...,0
V2 odd — 1= V2, V2'2, ....... )1

All vibrational states with 1=0 , therefore, have the weight of 1 and all
vibrational states with 1 > 0 have the weight of 2. The simplest
selection rules for optically permissable vibrational transitions are

Av, - even, Al=0, Av3 odd
Avyp - odd , Al=1, Avz even.

Aside from this, there is a multitude of other optically permissable
transitions. All transitions, however, lie in the medium to the far infrared
region. Pure vibrational transitions are seldom observed. With most
spectral lines, one deals with rotational vibration transitions. Not only
does the vibrational state of the molecule change, but also its rotational
state. Differentiations are made among P-, Q-, and R-transitions where
the corresponding letters are followed by the rotational quantum number
which would enter itself for the molecule after the emission of a light
quantum. The letters stand for the following changes in state:

J even AJ=+1 P - Branch,
J either AJ= 0 Q- Branch,
J even AJ=-1 R-Branch.

The occupation density distribution of rotational degrees of freedom has a
maximum Jmax for certain rotational quantum numbers. This depends on

the rotational temperature (which for the model at hand is assumed to be
equal to the translational temperature), when it is a matter of equilibrium
distribution. This is also assumed for the model at hand. At room
temperature, the transitions of the strongest intensities for the
CO,-molecule lie at P20 and R20. This corresponds to transitions with

J=19-20 andJ =21 —20.

The rate equations for the reaction system were determined under the
assumptions that the vibrational degrees of freedom of the CO5-molecule

influence one another only through reactions of the second order and that
the reaction velocity constants for the levels of a vibrational degree of
freedom do not depend on the vibrational states of other vibrational
degrees of freedom.
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In this sense, for example, the reactions

00°0 +M+ AE == 00% M

v1v2]-0 + M+ AE = v1v211 + M

are equivalent. The population density of a given level is then given by the

expression

"j = n- W(Vi) * ‘P(Vz) 'W(Vé’ 1)"JJ(V3)

n stands for the particle density of CO,, and \f‘ (x) stands for the

probability that a C02-molecule finds itself in the vibrational state x .

For state 03 ! 0, one obtains the population density

ng = n w00, vy) + $(03°0) ¥ (01%0) « ¥ (000, vy)

The state 0v200 for odd Vo is not real, it bresents only formal help.

3.4 Effect of Superimposed Radiation Fields

Now the effect of an approximately resonant radiation field will be
considered which acts perpendicular to the girection of flow. Let this
field have the spectral radiation density L, onone spectral line v jk-

Between the participating energy levels, the energy flow

E/V = 9Ly

is thus created. After dividing by the molecular energy difference
between the energy levels, one obtains the concentration change of the
vibrational levels for '

¢ = +g- L\)/AEjk|

* This designation corresponds to DIN 5496 “Temperature Radiation™;
instead many papers generally use the designation “Intensity” and the
formula symbol Iy.
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The positive sign is meant for the lower level which becomes more
populated by the transition; and the negative sign stands for the upper
level which becomes emptied. The energy difference between the two
levels is obtained from

where Ny = 6.023 X 1023 mo1™ 1 is Avogadro's constant. Finally, the energy

flow due to radiation must be given consideration in the equation for

vibrational energy because the emitted light quanta generally depart from

the flow.

with this kinetic model for the vibrational energy exchange in flowing gas

mixtures which contain C02 , Ho0, N>, 0O, , and He, it is possible to

investigate a multitude of processes. They include heating and cooling
processes, excitation by high frequency, relaxation processes after
gas-dynamic collisions and gas-dynamic CO,-lasers. In the following

chapter, the presented mode! will be applied to some examples.
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4. Applications

Wwith the help of the kinetic model for the €05, Hy0, N5, 05, and He

mixture, it is possible to investigate radiation transitions of the
C02-molecule for their potential laser fitness. The model will, first of

all, be checked with the help of known data for a cross-current C02—Iaser

with HF-impulse. Then, additional laser transitions, activated by various
pump methods, will be investigated.

4.1. Calculation of a Cross-Current CO--Laser with HF-Impulse

The subject of this chapter is the testing of the developed model using the
data for a cross-current C02-laser with high-frequency inpulse. For this

case, there are various experimental results available in literature. An
accurate description of such a laser can be found in Jacoby [9]. With the
help of Fig. 4.1.-1, the operational principle will be explained. A €O, - Ny

-He mixture in the ratio of COx:NyHe = 0.044: 0.186 : 0.77 flows through

Zactnical. Dotz vo + 865 mise

Ein =15..3- 0™ vem?
Py = 45 mbor
T = 300 K

PIV= 12 Wwicm?
COx: Ny :He = 00LL:0186:077 |

Fig. 4.1.-1

Schematics and technical data for a cross-current COo-laser with high-
frequency impulse, according to Jacoby [9].
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a rectangular channel of constant diameter, and passes, first of all,
through an impulse distance where the vibrational degrees of freedom of
CO5 and No are subjected to energy in form of electromagnetic

high-frequency radiation. The flow carries the HF-discharge downstream.
In the model, this process is taken into account by assuming a discharge
current density passage across the path of flow. Armandillo, Kaye [10]
propose the passage which is given by

X X
s § eme—mosin(ne )
3(x) jo " Xy sin(x X

jo Stands for the median current density in the region of the impulse
which stretches along path x4. Fig. 4.1.-2 shows the dependence of this

10

X,
lem)

-
-
-

0 50 uimssec] ®e X0
Fig. 4.1.-2

Dragging of the impulse distance by the current, according to Armandillo,
Kaye [10]).

distance x5 on the current velocity. In the case at hand, one obtains by
extrapolation an impulse distance x, =6 cm in length. In the electrical
field of the impulse distance some electrons which happen to be there, are

€4



accelerated and liberate additional electrons through collisions with gas
particles. If field strength E is suitably chosen, then the collisions with
electrons result in an excitation of the vibrational degrees of freedom.
For this process, the Boltzmann equation was soived by Nighan [11]. The
results can be found in the form of excitation coefficients for the
individual vibrational degrees of freedom. These calculations as well as
the experimental results by Novgorodov, et alii [25] show that the velocity
spectrum of the electrons under these conditions can no longer be
described with the help of a Maxwell distribution.

With the help of a simple approximation, one obtains the excitation
coefficients even without the Boltzmann equation. For this it is assumed
that the velocity spectra of the electrons parallel and perpendicular to the
field lines can be described by differing Maxwell distributions. These
calculations are carried out in Appendix B. The excitation coefficients
thus gained, agree well with the results by Nighan. As a resuit of the

HF -impulse, a crowding of the vibrational state 00" 1 of CO, comes about

compared to the states 10°0 and 02°0, which makes the liberation of
electromagnetic radiation with the help of a resonator possible. With the
help of the model at hand, Fig. 4.1.-3 shows the calculated passage of the
small signal amplification along the path of flow for the radiation
transition 00°1—>10°0. The wave length X = 10.5915 pm belongs to
this transition P 20. The calculations agree well with the measurements
published by Jacoby [9]. Figs. 41-4 to 4.1.-7 show that, in this case, all
participating vibrational degrees of freedom display disturbances in the
Boltzmann distribution. This is attributed mainly to the high-frequency
impulse.

The relationship (2.3.-2) is no longer valid for the transition probability
due to electron collisions. The excitation rates due to high-freguency
impulse are, moreover, substantially larger than the transfer rates
through collisions with other gas particles, so that certain vibrational
energy levels were given preferred excitation. To a smaller extent, the
disturbances in the Boltzmann distribution are caused by the influence of
VV-reactions. The disturbance of the Boltzmann distributions of the laser
levels is of special significance. Without the strong disturbances of the
asymmetrical valence modes of CO,, a substantially lower small signal

amplification would have been expected.



e Experiment according to Jacoby [9]

[im] ® Experiment
% nach Jacoby [9]
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Fig. 41.-3

Trace of small signal amplification in a cross-current CO,-laser

according to Jacoby [9] for the crossing 00°1 —10°0, P20 with a
wavelength of 10.5915 um.
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Fig. 4.1.-4

Trace of of the occupation density distribution in the cross-current COy-

laser according to Jacoby [9] for the symmetrical valence oscillation of

C02 without the effect of aradiation field.
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Fig. 41-5

Trace of the occupation distribution density in the cross-current CO5-
laser according to Jacoby [9] for the deformation oscillation of CO,
without the effect of a radiation field.

Fig. 4.1.-6

Trace of the occupation density distribution in the cross-current CO5-

laser according to Jacoby [9] for the asymmetrical valence oscillation of
CO, without the effect of a radiation field,
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Fig. 4.1.-7

Trace of the occupation density distribution in the cross-current COo-

laser according to Jacoby [9] for nitrogen without the effect of a radiation
field.
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42. Examination of Additional CO,-Laser Crossings

With the help of electrical discharges, one can easily activate the C02-

laser crossings 00°1 ~»10°0 at 10.6 um, and 00" 1020 at 9.6 um in
CO,-containing gas mixtures. Given by the level position, one can expect a

maximum efficiency of about 40%. For this reason, CO,-laser systems

have gained substantial importance, among other fields, in the processing
of materials. Because of level position and selection rules for radiation
crossings, one can imagine lasers with much higher efficiencies. We are
talking about 1asers with crossings of 02°0 —01 oat 16 pum and 10°0 —
o1loat 14 pm. In addition, the 16um-laser is of special importance. in
this case, there is the possibility to radiate UF6 in an isotope-selective

manner and thus separate the isotope. A method for the generation of the
necessary 16um-radiation was proposed by Wexler, et alii [12]. In this
method, the inverted medium is discharged above the 9.6 um-line. Thus
the upper laser level is populated for the 16um-crossing so that one can
expect an inversion. With the help of the model at hand, we shall now
examine whether or not this expectation becomes fulfilled. The laser
described in the previous section, will now be utilized as the 9.6
um-laser. With this 1aser, one can reach a radiation field with an
intensity of at least 600 W/cm? at the 9.6 pum-crossing. Calculations
with the model at hand show that the necesary prerequisites for the 16
Hm-crossing can, indeed, be attained in this manner. Fig. 42.-1 shows the
trace of the amplification for the 9.6 um-line and the trace of the small
signal amplification for the 16 um-line. This calculation assumed that
the 9.6 pm-laser beam has an expansion of 2 cm in the direction of flow,
and that the corresponding resonator is placed in the vicinity of maximum
small signal amplification. Fig. 42-2 to 4.2.-5 show the traces of the
occupation density distribution of the individual vibrational degrees of
freedom in the effective zone of the radiation field. Fig. 42.-3 shows that
there is, on account of the radiation field, an almost undisturbed
Boltzmann distribution for the deformation oscillation 02 . A similar

calculation was carried out for the examination of the 14 pym-

crossing. In this case, the flow medium was discharged above the 10.6 um
crossing, thus populating level 10°0. Fig. 42.-6 shows that in this
manner, a very high small signal amplification for the 14 pm-line is
obtained.
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Fig. 4.2.-1

Signal amplification for the crossing 00°1 - 02°0, P20 with

A =95525 um at a spectral radiation density of 600 W/cm2 and a small
signal amplification for the crossing 02°0 —01°0, P20 with

> =16.1601 um in the COo-laser according to Jacoby [9].
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Fig. 42.-2

Trace of the occupation density distribution in the cross-current
CO,-laser according to Jacoby [9] for the symmetrical valence oscillation

of CO, at a spectral density of 600 w/cm? with X = 9.5525 pm.
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Fig. 42.-3

Trace of the occupation density distribution in the cross-current
CO,-laser according to Jacoby [9] for the deformation oscillation of CO,

at a spectral density of 600 w/cm2 with ) = 9.5525 um.
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Fig4.2.-4

Trace of the occupation density distribution in the cross-current
CO5-laser according to Jacoby [9] for the asymmetrical valence oscillation

of C02 at a spectral density of 600 w/cm? with X = 95525 nm.
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Fig. 42-5

Trace of the occupation density distribution in the cross-current
CO,-laser according to Jacoby [9] for nitrogen at a spectral density of 600

w/cm? with X = 9.5525 um.

15

gltim]

10

(V0

0 1 2 3 4 5 xlen] 6

Fig 42.-6

Signal amplification for the crossing 00°1 — 10°0, P20 with

A= 105915 um at a spectral radiation density of 600 w/cm? and small
signal amplification for the crossing 10°0-» 01 '0, P20 with

5 = 13.8730 um in the CO,-laser according to Jacoby [9].
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Fig. 42.-7 to 42.-10 show the traces of the occupation density
distributions in the effective zone of the 10.6 pum-radiation field. Here
again, it becomes evident that the lower laser level 10°0 for the 10.6 um-
radiation becomes so strongly populated that an almost undisturbed
Boltzmann distribution emerges for the respective v, -mode. Based on the

calculation with the help of the model at hand one can assume that these
concepts are promising for the 16 pum- and the 14 um-laser. One can
expect that even larger small signal amplifications can be attained with
the help of more suitable gas mixture ratios and at a different initial
pressure. A certain difficulty, however, could be that the zone where one
can expect inversions for the second beam crossing, lies only within the
region of the first radiation field.
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Fig. 42-7

Trace of the occupation density distribution in a cross-current CO,-laser
according to Jacoby [9)] for the symmetrical valence oscillation of CO, at a
spectral radiation density of 600 w/em? with A= 105915 um.

73



0 L
9[%
-5
N
o Som
)5%
-0
-15
-0 d Py
0 2 [3 [ & n

Fig. 42.-8

Trace of the occupation density distribution in a cross-current COy-laser
according to Jacoby [9] for the deformation oscillation of CO, at a
spectral radiation density of 600 w/ecmZ with 2= 105915 jm.
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Fig. 42.-9

Trace of the occupation density distribution in a cross-current CO,-laser
according to Jacoby [9] for the asymmetrical valence oscillation of CO, at
a spectral radiation density of 600 w/cm? with A= 105915 pm.
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Fig. 42.-10

Trace of the occupation density distribution in a cross-current CO,-laser

according to Jacoby [9] for nitrogen at a spectral radiation density of
600 W/cmZ with A= 10.5915 um.

43 Inversions in Compression Flow.

Due to the sometimes very different collision excitation rates of the
vibrational degrees of freedom of CO, with other gas particles, one can

suspect that, at rapid compressions of C02—containing gas mixtures, there

can arise inversions between two rotational vibration states which are in
contact with one another by means of a radiation crossing. Gases suffer
rapid compressions, for example, at the passing of gas-dynamic collisions.
The relationship of the state before the collision and the state after the
collision is given by the Rankine-Hugoniot equations. Experiments show
that in a2 wide region for the collision mach number, the transiation-
rotation relaxation zone and the vibrational relaxation zone are markedly
separated from one another. Using the adiabatic exponent K = 7/5 and
with the help of the Rankine-Hugoniot equations, one obtains the state
prior to the vibrational relaxation. Losev [13] gives two radiation
crossings in which inversions are to be expected in the vibrational
relaxation zone after a collision with a collision Mach number of Ma=4 at



the initial pressure of py = 6 Torr in a gas mixture of 10% CO, , 88% N, ,
and 2% H,0. Here we deal with the crossings 04°0 —00°1 and 20°0 —»

00°1. The corresponding wavelengths lie at 50 um and 22 um. Losev gives
measurements which show that the expected inversions actually take
place. With the help of a simplified model, Losev also obtains inversions
numerically for these radiation crossings. The results of these
calculations, however, don't agree too well with the results of the
experiments. Losev explains this with the very short measuring times for
the collision tube experiments and the measuring errors which become
possible due to the cut-off at such 1arge wavelengths.

The kinetic model used for this paper, was then used for the previously
described collision tube flow. The results of these calculations and the
results by Losev are compared to one another in Fig. 43.-1. One can see
that the results of the model at hand agree better with the measurements
than the results of the model by Losev.
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Fig. 43.-1

Trace of the occupation density difference for the crossings 04°C —00°1,
P32 with X =50.1940 pym and 00°0—>00"1, P32 with A =223210 um
after a collision with collision mach number Ma = 4, initial pressure of
8 mbar in 10% €Oy - 2% HH0 - 88% No.

model at hand,
------- model by Losev [13],
..... — measurements by Losev.
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The better results with the model at hand can be taken back to the
considerations of disturbances in the Boltzmann distribution. Fig. 4.3.-2
shows the deviation in the oscillation temperatures for the individual
energy levels of CO, (V<) in contrast to the median vibration temperature

for the total degree of freedom. The Boltzmann distributions for the
remaining vibrational degrees of freedom don't appear to be markedly
disturbed.
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Fig. 43.-2

Deviation in the vibration temperature of the individual energy levels from
the median vibration temperature for the asymmetrical valence oscillation
of CO, after a collision with the collision mach number Ma =4, initial

pressure of 8 mbar in 10% CO, - 2% Hy0 - 88% Ny,
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5. Summary

A Kinetic model for the vibrational energy exchange in flowing gas
mixtures was presented. In contrast to earlier models, no Boltzmann
distribution was assumed for the occupation density distribution within
the individual vibrational degrees of freedom. With the help of this model,
the occurrences in certain gas-dynamic lasers and in the relaxation zone
after gas-dynamic collisions can be described. The model was checked
with known data for a cross-current CO5-laser with high-frequency

excitation. The results of these calculations agree very well with the
experimental results which were gained for the CO,-laser. In this

context, we could show that the occupation density distributions of the
individual vibrational degrees of freedom cannot be described by
Boltzmann distributions. We could, furthermore, show that, upon
discharge of this cross-current CO,-1aser above the 9.6 pm- and the 10.6

um-line, the prerequisites for the activation of a 16 pm- and a 14 pm-
laser can be created. Finally, an investigation was made into whether or
not one can expect inversions in the relaxation zone after gas-dynamic
collisions. For this, it was shown by two examples that this is possible.
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Appendix
A Reaction Velocity Constani

For the kinetic model at hand, 44 reaction velocity constants were needed.
From literature, for about one half of the constants experimental results
are known which span a wide temperature region. For 9 constants, the
Millikan-White-Systematics could be utilized. Of these, 4 constants are
covered by measured data for some temperatures. There still remain 12
velocity constants for VT-reactions which have to be determined in a
theoretical manner. Of all theories mentioned in Chapter 3.2., the theory
of Widom [14] best reproduces the velocity constants for VT-reactions for
which there are experimental results available. Therefore, the theory of
Widom is used to determine those constants for which there are no
experimental results available.

A -1 Experimentally Determined Constants
According to Chapter 3.2., the expression

’"E=A+B-T'1/3+c-'r‘2/3

is used for VT-reactions. From experimental results, one obtains the
coefficients which are listed in Table A-1. For VV- and for V-reactions
the expression

Tnk = A+B -JT +c-(\[T)zi

is used. From experimental results, one obtains the coefficients which are
listed in Table A - 2. The sources for the experimental results are given,

sorted according to reactions in a special literature list at the end of this

paper.
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Reaction Equation A B c
c0,{®M(v,) + co, + 1388 cn” =0, {v) v co, | 43,88 [-251,79 | 748,38
c0,{®)(w,) + €0, + 667 cn”! 20, (y,) +co, | 39,26 |-189,64 | 485,89 '
c0,{(v,) + W0 + 667 cm”! :co,“)(vz) +H0 | 28,18 | 11,51 0o
co,(°)(v2) + He 667 e = co,“)(vz) +He | 29,04 | -29,89 46,05
c0,{®)(uy) + co, + 2349 cn”’ 20, {M(u) + co, | 30,63 | -92,9 0
€0, ) (v,) + N, + 2349 on”' 20,y o m, | 25,50 | 126,7 |-1329,0
Hzo(°)(\,2) + H,0 o 1595 an” @ n, 01 (y) + w0 | 38,25 -80,5 34,54
He000(w) + N, + 1595 cn” a0y o w, | 31,30 | 58,72 0
Hzo(°)(\,2) + He + 1595 cm! =H,0“)(v2) +He | 40,16 |-229,8 | o921
n, (o) e 1,0+ 2331 et o2n, (V) + 1,0 | 33,96 [-131,92| 347,69
N, (0 on, + 233 et 2,V oN, | 44,76 |-388,7 | 1093,7
N, (o) +He + 2331 en! 2w, (1) +He | 39,24 [-184,21 0
0,0 «0, + 155 cn”! 20,1 +0, | 42,99 |-274,58 | 575,65 ;
0, (@) +He + 1556 cn”! 20, (1) +He | 38,89 |-180,52 | 383,89 .

Table A-1

Experimentally determined coefficients for the reaction velocity

constants of VT-reactions.

g0



Reaction Equation

A B C
c0{Xup)et M+ 18 ent 2 0o, Mhup () | 29,03 | -0,2756 | 0,4934-102
c0, D)ot o 7 e 2 o) (1 | 28,09 | -0,06731 0,083 1073
MO ol warsen e, () w000 | 957 | 0,3723 Fo, 1992107
N ) o, hv,)+736 et 2w, ¢ m0(Ohu) | 11,63 | 0,303 |0
CO,(3)(v3)¢C0, + 416 e 200, (M(vy)eco, | 18,53 | o0,1855| 0,228 107
Co,(3)(v3)+n,o 46 em ! 2 C03(1)(v3)+HzO 19,42 | 0,2346 |-0,3615-107°
co,(3)(v3)+u, + 416 cn ' 2 co,(')(v3)+N, 23,09 | -0,2719 | 0,115 +107"
c0, Dvy+0, + 416 e 2 co,Viv)e0, 16,63 | 0,2915 |0
¢, 3 (vy)ehe + 416 cn”! 2 0,V (v )+ 16,6 | 0,2351]0,1287-107°

Table A-2

Experimentally determined coefficients for the reaction velocity
constants of VV- and V-reactions.

A-2 Applicati [ the Millikan-White Sysi ti

For a string of reactions, there are either only a few direct experimental
results, or only experimental results for the same reaction with other
collision partners. For these cases, the MW-Systematics can be used if
one doesn’'t expect any anomalous temperatures for the respective
reactions. With Equations (2.3.1.-2)) and (3.1.-2.), one obtains

¥ T
Ink = A+ .np. 7113
o [1-exp(-0/T)] BT

with the expressions

A= 36,64+ 1,74 107> . g¥3 . 34

[~}
n

1,16 - 1073 . . o3
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for the coefficients so that ?(_ receives the units cm>/mole.sec. An
estimate shows that the second term of the defining equation for A is
generally small against the first constant term. A is, therefore, nearly
independent of |t and ©. A check with the help of experimental results
shows that the Mw-Systematics theory can be applied, in a few cases, to
multi-atomic molecular gases, if the first constant term of the defining
equation is fitted for A itself. InTable A -3, the constants for those
reactions are listed which can be handled with the help of the Mw-
Systematics.

Reaction Equation : [

okl | A B |
co,(°)(v,)+He +1388 cm” ) @ co,(”(vl)Me 1998 23,72 55,9 | 1)
€0, (v, )+, + 667 em™! 2 €0, Tiv, ), 960 | 23,72 | 45,45 ( 1)
co,(°)(v2)+o, + 667 cm”! 2 co,“)(vz)m, 960 23,81 47,3 | 1)
¢0, (©(vy)+e +2309 em™! 2 0, (v )eme 338t | 24,9 | 112,72 | 1)
co,(Z)(v2)+COz* 102 em! = co,(')(v1)+co, 147 16,72 | 4,213 | 2)
c0, @) v,)+h,00 102 en” 2 co, (v, )4h,0 147 | 16,67 | 3,2167 | 1)
c0, D) an, + 102 en”! 2 0o, M (v )om, 147 | 16,69 | 3,7228 | 2)
c0, D (v,)+0, + 102 em™ 2 co,Miv, o0, 147 | 16,7 | 3,8736 | 1)
CO,(Z)(v2)+He +102 cn”! :CO;(”(W)*HE 147 14,81 | 3,209 | 2)

Table A-3

Constants for reaction velocity constants which are determined according
to the Mw-Systematics.

1)  MW-Systematics applies to the same reaction with other reaction
partners for which there are experimental results.

2) MWw-Systematics was adjusted to the few available experimental data
by varying A. With this correction, the other constants for the same
reaction with other collision partners can be described for which
there are more experimental results available.

Reactions with H-0 as aneutral or a reactive collision partner with the

help of the MW-Systematics, are not too well described. One exception,
however, is the Fermi-Resonance reaction. 82



A-3 Applicati f Widom's Tt

The velocity constants for which there were no experimental results
available and which could also not be described by the systematics of
Millikan, White, were then determined with the help of the theory of
widom [14]. The validity of this theory was confirmed by the application
of reactions for which experimental results were available. This theory
deals with the exact solution of the Schr'ddinger equation for Maxwell-
potentials, meaning the interaction potential in the form of

V(r): A/r4

For the vibrational relaxation time, one thus obtains

'\l;@ 2 x,¥3 |

n kg w2 2K, my TR

» e *cos (2~——+§-) e ’
322 .72 ¥ .

if ky » k7 » K is satisfied. k,, stands for a form of the crossing wave
number which can be determined according to

. = . ™™ = . .5
ko 2y € Wi € hee+v

where ¥ is the actual emitted or absorbed wave number, if one deals with
permitted crossings.

In the same sense, Ky stands for a thermal wave number which can be
determined according to

hz.sz = 2ukK-T

where K stands for the Boltzmann constant. Quantity K is a measure for
the potential stiffness which is determined from A according to

x = h/YZuh

Therefore, this quantity also has the dimension of a wave number.
Quantities y and m stand for the reduced masses of collision and

oscillation. Based on the relationship A2,2 = Ay 1 Ao 0N obtains K
at binary collisions from



The values of k& for the individual molecular combinations are most
reliably obtained from experimental results. Thus one can draw
conclusions about the relaxation time of other molecular combinations for
which there are no experimental results available, and which can also not
be treated with the help of the MW-Systematics.

Combination | <7n™']| iifa/mo1] | mla/mor] | <A™
€0, (v, ) - €O, 1388 22 4,98 * i
H,0 1388 12,7742 | 8 4,86 1
N, 1388 17,1111 | 8 4,91 ’
0, 1388 18,5263 { 8 4,55
He 1388 3,6667 | 8 1,66
€0, (v,) - Co, 667 22 8,7273 3,19 *
H,0 667 12,7742 | 8,7273 2,5 *
N, 667 17,1111 | 8,7273 3,93
0, 667 18,5263 | 8,7273 3,64
He 667 3,6667 | 8,7273 1,33 *
CO,(v3)-CO, 2349 22 8,7273 6,5 *
H,0 2349 12,7742 8,7273 5,55
N, 2349 17,1111 8,7273 5,61 *
0, 2349 18,5263 | 8,7273 5,2 .
He 2349 3,6667 | 8,7273 1,9
Hzo(vz) - 0O, 1595 12,7742 1,7778 4,81
H,0 1595 9 1,7778 4,3 *
N, 1595 10,9565 | 1,7778 3,54 *
0, 1595 11,52 1,7778 4,29
He 1595 3,27271 | 1,7778 1,99 *
N, - co, 2331 17,111 | 7 4,87
H,0 2331 10,9565 | 7 4,41 *
N, 2331 14 7 4,72 *
0, 2331 14,9333 | 7 4,4
He 2331 3,5 7 2,4 *
0, - €0, 1556 18,5263 | 8 4,51
H,0 1556 11,52 8 4,29
N, 1556 14,9333 | 8 4,4
0, 1556 16 8 4,1 *
He 1556 3,5556 | 8 1,9
Table A-4

Molecular data which are needed for the application of the theory of
Widom. Values for K marked with an asterisk (*) were adjusted to
experimental results for the reaction velocity constant.



For all degrees of freedom for CO,, the value Ky,_1ya=0.306 A" was used
which is calculated from COx(V,),He with the value k=3.19 A”! for
C02(v2) ,C02. From other experimental results with He as a collision
partner, one obtains a mean of

-1
He-He = 0,59 A

Based on the structure of the CO5-molecule and its own vibrational form,

one could expect that there would be a different value for ¥ for each
vibrational degree of freedom. For reactions with CO, as collision

partner, the arithmetic mean of all three values of K was used as the
parameter. It is

-t
K00, -co, * 4189 A

As a result of the factor cos 2 ( 5-;— + VQ—K;Q“-’) , the relaxation time for
certain K-values grows beyond all limits. For many molecular
combinations, K lies in the vicinity of such poles so that the relaxation
time is very sensitive to small changes in k.

The paths of the reaction velocity constants thus determined, are adjusted
to a curve in the form of

Mk = A+B'T-1/3+C°T-2/3

with the help of the least squares method. For the still missing reactions,
one obtains the coefficients A,B, and C in accordance with Table A-S.
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Reaction Equation A B ¢
0, (v, )en,0+1388 em! = o, V(v om0 | 42,85 201,5 | 82,6
2 1 2 1

co, (v, )on, +1388 n”' 2 cot“)(\ﬁ)m2 42,75 21,5 | 613,9
€0, (v, )00, +1388 en”! 2 c0, V)00, | 41,98 | - 220, | 641,2
co,(°)(v3)m,0+2349 ! = coz“)(v_.,)m,o 38,37 169,5 | 478,9
0, (v,)00, +2349 en™' 2 co,Mivde0, | 37,17 | - ren,0 | sean
h,00) (00000, 41595 e 2 W00 (v )0c0, | 43,23 197,0 | 572,9
1,00 (v,)40, +1595 en™! &m0 (u,000, | 43,21 201,4 | 585,0
N0 aco,e2331 e 2 (Y o, | 38,44 193,8 | 52,6
NGO g, s23m e 2, () L, 39,48 195,8 | 559,9
0,00 ico+1856 et = 0,{"  4co, | 38,33 | - 217,5 | 630,5
0,00 001556 em! 20,0 .m0 41,98 202,8 | 88,9
0@ N, s1556 et 20,1, | a3 211,0 | 610,

Table A-5

Coefficients of reaction velocity constants which were calculated

according to the theory of Widom.
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B Electrical lmpulse Coeffici

The velocity spectrum of the electrons in the HF-impuise path of the laser
cannot be described accurately enough by a Maxwell distribution with a
translational temperature. For the total of all the electrons, there are
deviations from a Maxwell distribution whose magnitude depends on the
electron energy. An attempt is now made to describe the velocity
spectrum of the electrons with the help of a Maxwell distribution which
has two temperature parameters. For this, one electron temperature each
is defined in the direction of the field lines, and the other electron

temperature is defined perpendicular thereto, so that the valid
distribution function is

with the coefficients

2 N 2 . .
Bxy = m /(2K Txy) and B, m /(2K Tz)

The velocity distribution of the molecules is described by the Maxwell
distribution

by ) = (7 m3 - exp b F2cWi5)

with the coefficients

y2 = M /(2KT)

The relative velocity between a molecule and an electron is

when the electron temperature in the direction of the field lines (z-axis)
is much greater than that perpendicular thereto, and is greater than the
gas temperature, then the following relationship is valid as an
approximation

g7



The impulse coefficient is then obtained by

+ @ + o

;M,e * fff ff[“ CQly,) v, s £ ) - f (W) dVdW

Here, Q stands for the effective cross section. After integration over
W, Vy, and vy , one obtains

+
-

kM,e = f4 Q(v,) - v, - (B,/ 7) - exp(-sg . vi)dvz

The portion of electrons with a velocity between Vg and v, + dv, is
48 = 2(8, +v,) - exp [-(8, + v,)7] dlg, v,)
The median electron energy is then

T = m/(28§)'f£3-exp(- gz)dg = %k-Tz
5 .

One obtains for the median electron energy in terms of eV units

N j—
o |x
.
-4

With this, one can express the impulse coefficient by

- 4 — by
kM,e SV_?.]/U.E/'“ 'fQ(u)'exp('%'U/-U_) d W) . (B-])
¢}

The effective cross sections Q(u) for the electron collision excitation
were taken from literature [15, 16]. The impulse coefficients thus
determined, are presented inFig.B - 1. The traces found by Nighan [11],
are given as a comparison in Fig. B - 1. Within the reference of generally
acceptable accuracies for kinetic data, there is good agreement. Thus it

g8
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Impulse coefficients for the vibrational degrees of freedom of CO, and Ny
due to electron collisions.

model at hand,
---------- Nighan [11].
appears justified to drop the involved calculation of Nighan [11] and to
determine the median kinetic parameters independent of one another.
with the help of Equation (B - 1), one obtains the kinetic parameters as
they have been presented inFig. B- 1 and B - 2. The impulse

coefficients of all other levels and vibrational degrees of freedom can, on
the other hand, be neglected.
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